
Algorithmes de tri



Tri : complexité 
minimale

• n! résultats possibles

• si tests binaires, on obtient un arbre de 
hauteur minimale
log2 n! ~ log2 (n^n / e^n) ~ O(n log n)

• La complexité d’un tri sera donc au mieux 
en O(n log n)



Tri par sélection 
(selection sort)

     

6.3 Selection Sort

One of the simplest sorting algorithms works as follows: First, find the smallest element

in the array, and exchange it with the element in the first position. Then, find the second

smallest element and exchange it with the element in the second position. Continue in

this way until the entire array is sorted. This method is called selection sort because it

works by repeatedly selecting the smallest remaining element. Figure 6.3 shows the

method in operation on a sample file.

Figure 6.3. Selection sort example

The first pass has no effect in this example, because there is no element in the

array smaller than the A at the left. On the second pass, the other A is the

smallest remaining element, so it is exchanged with the S in the second position.

Then, the E near the middle is exchanged with the O in the third position on the

third pass; then, the other E is exchanged with the R in the fourth position on the

fourth pass; and so forth.

Program 6.12 is an implementation of selection sort that adheres to our conventions. The

inner loop is just a comparison to test a current element against the smallest element

found so far (plus the code necessary to increment the index of the current element and

to check that it does not exceed the array bounds); it could hardly be simpler. The work

of moving the items around falls outside the inner loop: each exchange puts an element

into its final position, so the number of exchanges is N - 1 (no exchange is needed for the

final element). Thus the running time is dominated by the number of comparisons. In

Section 6.6, we show this number to be proportional to N2 and examine more closely

how to predict the total running time and how to compare selection sort with other

elementary sorts.

A disadvantage of selection sort is that its running time depends only slightly on the

amount of order already in the file. The process of finding the minimum element on one

pass through the file does not seem to give much information about where the minimum

might be on the next pass through the file. For example, the user of the sort might be

surprised to realize that it takes about as long to run selection sort for a file that is

already in order, or for a file with all keys equal, as it does for a randomly ordered file!

Récurrence sur le résultat (tableau de 1 à i-1 trié)



Tri par sélection 
(selection sort)

Pour chaque i de l à r-1, échanger a[i] avec l’élément 
minimum de a[i], ..., a[r]. Quand l’index i va de gauche à 
droite, les éléments à sa gauche sont à leur place finale dans le 
tableau (et ne seront plus modifiés), donc le tableau est 
complètement trié lorsque i arrive à l’extrémité droite.

static void selection(ITEM[] a, int l, int r) 
  { 
    for (int i = l; i < r; i++) 
      { int min = i; 
        for (int j = i+1; j <= r; j++) 
          if (less(a[j], a[min])) min = j; 
        exch(a, i, min); 
      } 
  } 



Tri par insertion 
(insertion sort)

     

6.4 Insertion Sort

The method that people often use to sort bridge hands is to consider the cards one at a

time, inserting each into its proper place among those already considered (keeping them

sorted). In a computer implementation, we need to make space for the element being

inserted by moving larger elements one position to the right, and then inserting the

element into the vacated position. The sort method in Program 6.1 is an implementation

of this method, which is called insertion sort.

As in selection sort, the elements to the left of the current index are in sorted order

during the sort, but they are not in their final position, as they may have to be moved to

make room for smaller elements encountered later. The array is, however, fully sorted

when the index reaches the right end. Figure 6.4 shows the method in operation on a

sample file.

Figure 6.4. Insertion sort example

During the first pass of insertion sort, the S in the second position is larger than

the A, so it does not have to be moved. On the second pass, when the O in the

third position is encountered, it is exchanged with the S to put A O S in sorted

order, and so forth. Un-shaded elements that are not circled are those that were

moved one position to the right.

The implementation of insertion sort in Program 6.1 is straightforward, but inefficient.

We shall now consider three ways to improve it in order to illustrate a recurrent theme

throughout many of our implementations: We want code to be succinct, clear, and

efficient, but these goals sometimes conflict, so we must often strike a balance. We do so

by developing a natural implementation, then seeking to improve it by a sequence of

transformations, checking the effectiveness (and correctness) of each transformation.

Program 6.13 is an implementation of insertion sort that is more efficient than the one

given in Program 6.1 (in Section 6.6, we shall see that it is nearly twice as fast). In this

book, we are interested both in elegant and efficient algorithms and in elegant and

efficient implementations of them. In this case, the underlying algorithms do differ

slightly—we should properly refer to the sort method in Program 6.1 as a nonadaptive

insertion sort. A good understanding of the properties of an algorithm is the best guide

to developing an implementation that can be used effectively in an application.

Récurrence sur les données (on insère l’élément i)



Tri par insertion 
(insertion sort)

(i) met le plus petit élément du tableau à la première place pour que cet 
élément serve de “sentinelle” ; (ii) une seule assignation, plutôt qu’un 
échange, dans la boucle principale ; et (iii) la boucle interne se termine 
quand l’élément inséré est à la bonne position. Pour chaque i, trie les 
éléments a[l], ..., a[i] en déplaçant d’une position vers la droite les 
éléments de la liste triée a[l], ..., a[i-1] qui sont plus grands que a[i], 
place ensuite a[i] à la bonne position.

static void insertion(ITEM[] a, int l, int r) 
  { int i; 
    for (i = r; i > l; i--)
      if (less(a[i], a[i-1])) exch (a, i-1, i); 
    for (i = l+2; i <= r; i++) 
      { int j = i; ITEM v = a[i]; 
        while (less(v, a[j-1])) 
          { a[j] = a[j-1]; j--; } 
        a[j] = v; 
      } 
  } 
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8.3 Top-Down Mergesort

Once we have a merging procedure, it is not difficult to use that procedure as the basis

for a recursive sorting procedure. To sort a given file, we divide it in half, recursively sort

the two halves, and then merge them. An implementation is given in Program 8.3; an

example is depicted in Figure 8.2. As mentioned in Chapter 5, this algorithm is one of the

best-known examples of the utility of the divide-and-conquer paradigm for efficient

algorithm design.

Figure 8.2. Top-down mergesort example

Each line shows the result of a call on merge during top-down mergesort. First, we

merge A and S to get A S; then, we merge O and R to get O R; then, we merge O

R with A S to get A O R S. Later, we merge I T with G N to get G I N T, then

merge this result with A O R S to get A G I N O R S T, and so on. The method

recursively builds up small sorted files into larger ones.

Top-down mergesort is analogous to a top-down management style, where a manager

gets an organization to take on a big task by dividing it into pieces to be solved

independently by underlings. If each manager operates by simply dividing the given task

in half, then putting together the solutions that the subordinates develop and passing the

result up to a superior, the result is a process like mergesort. Not much real work gets

done until someone with no subordinates gets a task (in this case, merging two files of

size 1); but management does much of the work, putting together solutions.

Mergesort is important because it is a straightforward optimal sorting method (it runs in

time proportional to N log N) that can be implemented in a stable manner. These facts

are relatively easy to prove.

As we have seen in Chapter 5 (and, for quicksort, in Chapter 7), we can use tree

structures to help us to visualize the recursive call structure of a recursive algorithm, to

help us to understand variants of the algorithm, and to expedite the analysis of the

algorithm. For mergesort, the recursive call structure depends only upon the size of the

input. For any given N, we define a tree, called a divide-and-conquer tree, that describes

the sizes of the subfiles that are processed during the operation of Program 8.3 (see

Exercise 5.73): If N is 1, the tree is a single node with label 1; otherwise, the tree is a

node containing the file size N as the root, the tree for N/2  as the left subtree, and the

Récurrence dichotomique sur les données



static void mergesort(ITEM[] a, int 
l, int r) 
  { if (r <= l) return; 
    int m = (r+l)/2; 
    mergesort(a, l, m); 
    mergesort(a, m+1, r); 
    merge(a, l, m, r); 
  } 

Tri fusion (Merge sort)



Tri par segmentation
(Quicksort, Hoare 1960)

We use the following general strategy to implement partitioning. First, we arbitrarily

choose a[r] to be the partitioning element—the one that will go into its final position.

Next, we scan from the left end of the array until we find an element greater than the

partitioning element, and we scan from the right end of the array until we find an

element less than the partitioning element. The two elements that stopped the scans are

obviously out of place in the final partitioned array, so we exchange them. Continuing in

this way, we ensure that no array elements to the left of the left index are greater than

the partitioning element, and no array elements to the right of the right index are less

than the partitioning element, as depicted in the following diagram.

Here, v refers to the value of the partitioning element, i to the left index, and j to the

right index. As indicated in this diagram, it is best to stop the left scan for elements

greater than or equal to the partitioning element and the right scan for elements less

than or equal to the partitioning element, even though this policy might seem to create

unnecessary exchanges involving elements equal to the partitioning element (we shall

examine the reasons for this policy later in this section). When the scan indices cross, all

that we need to do to complete the partitioning process is to exchange a[r] with the

leftmost element of the right subfile (the element pointed to by the left index). Program

7.2 is an implementation of this process, and Figures 7.2 and 7.3 depict examples.

Figure 7.2. Quicksort partitioning

Quicksort partitioning begins with the (arbitrary) choice of a partitioning element.

Program 7.2 uses the rightmost element E. Then, it scans from the left over

smaller elements and from the right over larger elements, exchanges the elements

that stop the scans, continuing until the scan indices meet. First, we scan from the

left and stop at the S, then we scan from the right and stop at the A, and then we

exchange the S and the A. Next, we continue the scan from the left until we stop

at the O, and continue the scan from the right until we stop at the E, then

exchange the O and the E. Next, our scanning indices cross: We continue the scan

from the left until we stop at the R, then continue the scan from the right (past

the R) until we stop at the E. To finish the process, we exchange the partitioning

element (the E at the right) with the R.



Tri par segmentation
(Quicksort, Hoare 1960)

• Choisir un pivot v

• Réarranger le tableau pour que tous les éléments 
plus petits que v soient à gauche, tous les plus 
grands à droite

• Trier les deux sous-tableaux à droite et à gauche

static void quicksort(ITEM[] a, int l, int r) 
  { 
    if (r <= l) return; 
    int i = partition(a, l, r); 
    quicksort(a, l, i-1); 
    quicksort(a, i+1, r); 
  } 



Tri par segmentation : partition
(Quicksort, Hoare 1960)

Figure 7.3. Dynamic characteristics of quicksort partitioning

The partitioning process divides a file into two subfiles that can be sorted

independently. None of the elements to the left of the left scan index is larger, so

there are no dots above and to its left; and none of the elements to the right of

the right scan index is smaller, so there are no dots below and to its right. As

shown in these two examples, partitioning a random array divides it into two

smaller random arrays, with one element (the partitioning element) ending up on

the diagonal.

The inner loop of quicksort increments an index and compares an array element against

a fixed value. This simplicity is what makes quicksort quick: It is hard to envision a

shorter inner loop in a sorting algorithm.

Program 7.2 uses an explicit test to stop the scan if the partitioning element is the

smallest element in the array. It might be worthwhile to use a sentinel to avoid this test:

The inner loop of quicksort is so small that this one superfluous test could have a

noticeable effect on performance. A sentinel is not needed for this implementation when

the partitioning element is the largest element in the file, because the partitioning

element itself is at the right end of the array to stop the scan. Other implementations of



Tri par segmentation
(Quicksort, Hoare 1960)

La variable v contient la valeur du pivot a[r], et i et j sont respectivement les indices 
de parcours gauche et droit. La boucle de partition incrémente i et décrémente j, en 
maintenant la propriété invariante : aucun élément à gauche de i n’est plus grand que v 
et aucun élément à droite de j n’est plus petit que v. Quand les indices se rejoignent, on 
termine le partitionnement en échangeant a[i] et a[r], ce qui met v dans a[i], avec 
aucun élément plus grand que v à droite et aucun élément plus petit à gauche.

La boucle de partitionnement est codée comme une boucle infinie, avec un break quand 
les indices se croisent. Le test j==l protège du cas où l’élément de partitionnement est le 
plus petit du fichier.

static int partition(ITEM a[], int l, int r) 
  { int i = l-1, j = r; ITEM v = a[r]; 
    for (;;) 
      { 
        while (less(a[++i], v)) ; 
        while (less(v, a[--j])) if (j == l) break; 
        if (i >= j) break; 
        exch(a, i, j); 
      } 
    exch(a, i, r); 
    return i; 
  } 



Tri : complexité
• Tri par sélection : au plus n^2/2 comparaisons et n 

échanges

• Tri par insertion : au plus n^2/4 comparaisons et 
n^2/4 affectations

• Tri fusion : O(n log n) (démonstration à suivre)

• Quicksort : n^2/2 comparaisons au pire,
2n ln n comparaisons en moyenne,
donc O(n log n). Partitionnement en O(n). 
Situation optimale : pivot au milieu, donc choix du 
pivot crucial
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8.6 Performance Characteristics of Mergesort

Table 8.1 shows the relative effectiveness of the various improvements that we have

examined. As is often the case, these studies indicate that we can cut the running time

by half or more when we focus on improving the inner loop of the algorithm.

In addition to netting the improvements discussed in Section 8.2, a good Java VM

implementation might avoid unnecessary array accesses to reduce the inner loop of

mergesort to a comparison (with conditional branch), two index increments (k and either

i or j), and a test with conditional branch for loop completion. The total number of

instructions in such an inner loop is slightly higher than that for quicksort, but the

instructions are executed only N lg N times, where quicksort's are executed 39 percent

more often (or 29 percent with the median-of-three modification). Careful

implementation and detailed analysis are required for more precise comparison of the

algorithms in particular environments; nonetheless, we do know that mergesort has an

inner loop that is slightly longer than that of quicksort.

Table 8.1. Empirical study of mergesort algorithms

These relative timings for various sorts on random files of integers indicate that

standard quicksort is about twice as fast as standard mergesort; that adding a cutoff for

small files lowers the running times of both bottom-up and top-down mergesort by

about 15 percent; that top-down mergesort is about 10 percent faster than bottom-up

mergesort for these file sizes; and that even eliminating the cost of the file copy (the

method used in the Java system sort) leaves mergesort substantially slower than

quicksort for randomly ordered files.

  top-down bottom-up  

N Q T T* O B B* S

12500 23 27 16 19 30 20 19

25000 20 43 34 27 42 36 28

50000 45 91 79 52 92 77 56

100000 95 199 164 111 204 175 117

200000 201 421 352 244 455 396 256

400000 449 904 764 520 992 873 529

800000 927 1910 1629 1104 2106 1871 1119

Key:

Q Quicksort, standard (Program 7.1)

T Top-down mergesort, standard (Program 8.1)

T* Top-down mergesort with cutoff for small files

O Top-down mergesort with cutoff and no array copy

B Bottom-up mergesort, standard (Program 8.5)

B* Bottom-up mergesort with cutoff for small files

S java.util.Arrays.sort


